数学统计在一万次的局牌中, 开庄(Banker)约有4581次; 开闲(Player)约有4458次; 开和约有(Tie)961次.) s3 b* l/ l6 r
由此结果可以得知, 开庄次数只比开闲次数多123次. 因此可以得到以下结论: 开庄与开闲的机会几乎相同. 根据此结论可以应用于以下的致胜法则.
连续买闲不买庄, 以系统投注法, 变码法来调整投注金额.
应用实例致胜法则二连输5手注码变化分别是1 2 3 4 5, 以1 为基数输一手加1以此类推.
应用前提
$ L3 O7 I+ A# e) l
连赢5手注码变化分别是6 5 4 3 2, 赢一手减1以此类推. # j( Q. L# ], S r8 q4 d6 c
# P X( C/ b& V' t/ ~) z6 o: v$ x
连输5手连赢5手的结局是净赚5手.用此法的前提是你比须有足够的资金来运作, 每次赢满18手, 就必须从新用1为基码, ; R2 ] x4 ~$ Q
开始新一轮的牌局.
凡上一铺所出的牌最后派的一张是: 10, J, Q, K, A, 2, 3, 4今铺就买闲, 凡上一铺所出的牌最后派的一张是: 5, 6, 7, 8, 9, 今铺就闲,庄各压一元.以系统投注法, 变码法来调整投注金额.
应用实例a, U5 v3 L( t连输5手注码变化分别是1 2 3 4 5, 以1 为基数输一手加1以此类推.
应用前提
连赢5手注码变化分别是6 5 4 3 2, 赢一手减1以此类推. # {1 Z7 n1 X( C0 V4 `0 n+ y# _/ ~
连输5手连赢5手的结局是净赚5手.用此法的前题是你比须有足够的资金来运作, 每次赢满9手, 就必须从新用1为基码, 开始新一轮的牌局.
| 欢迎光临 优惠论坛 (http://tcelue.co/) | Powered by Discuz! X3.1 |